Transistors

- What is a Transistor?
- History
- Types
- Characteristics
- Applications

What is a Transistor?

- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

\mathbf{T}	T

A Brief History

- Guglielmo Marconi invents radio in 1895
- Problem: For long distance travel, signal must be amplified
- Lee De Forest improves on Fleming's original vacuum tube to amplify signals
- Made use of third electrode
- Too bulky for most applications

The Transistor is Born

- Bell Labs (1947): Bardeen, Brattain, and Shockley
- Originally made of germanium
- Current transistors made of doped silicon

How Transistors Work

- Doping: adding small amounts of other elements to create additional protons or electrons
- P-Type: dopants lack a fourth valence electron (Boron, Aluminum)
- N-Type: dopants have an additional (5th) valence electron (Phosphorus, Arsenic)
- Importance: Current only flows from P to N

Diodes and Bias

- Diode: simple P-N junction.
- Forward Bias: allows current to flow from P to N.
- Reverse Bias: no current allowed to flow from N to P.
- Breakdown Voltage: sufficient N to P voltage of a Zener
 Diode will allow for current to flow in this direction.

Bipolar Junction Transistor (BJT)

- <u>3 adjacent regions</u> of doped Si (each connected to a lead):
 - Base. (thin layer, less doped).
 - Collector.
 - Emitter.
- <u>2 types</u> of BJT:
 - npn.
 - pnp.
- <u>Most common</u>: npn (focus on it).

npn bipolar junction transistor

Developed by Shockley (1949)

pnp bipolar junction transistor

BJT npn Transistor

- <u>1 thin layer of p-type</u>, sandwiched between <u>2 layers of n-type</u>.
- N-type of emitter: <u>more heavily doped</u> than collector.
- <u>With $V_C > V_B > V_E$ </u>:
 - <u>Base-Emitter</u> junction <u>forward biased</u>, <u>Base-Collector</u> <u>reverse biased</u>.
 - Electrons diffuse from Emitter to Base (from n to p).
 - There's a <u>depletion layer</u> on the Base-Collector junction → no flow of e⁻ allowed.
 - **BUT** the <u>Base is thin and Emitter region is n^+ (heavily doped)</u> \rightarrow electrons have enough momentum to cross the Base into the Collector.
 - The small base current I_B controls a large current I_C

$$V_{C} > V_{B} > V_{E}$$

$$I_{E} = I_{C} + I_{B}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_{CE} = V_{C} - V_{E}$$

$$I_{C} = \beta I_{B}$$

$$I_{C} = \beta I_{B}$$

$$I_{C} = \beta I_{B}$$

$$I_{C} = V_{C}$$

$$I_{C} = V_{C}$$

$$V_{C} = V_{C}$$

$$V_{C} = V_{C} + V_{C}$$

$$V_{B} = V_{B} - V_{E}$$

$$V_{C} = V_{C} + V_{C}$$

T | T7

BJT characteristics

- Current Gain:
 - $\underline{\alpha}$ is the fraction of <u>electrons</u> that <u>diffuse across</u> the narrow Base region
 - $\frac{1-\alpha}{1+\alpha}$ is the fraction of electrons that recombine with holes in the Base region to create base current
- The current Gain is expressed in terms of the <u>β (beta)</u> of the transistor (often called h_{fe} by manufacturers).
- <u>β (beta)</u> is Temperature and Voltage dependent.
- It can vary a lot among transistors (common values for signal BJT: 20 - 200).

npn Common Emitter circuit

- Emitter is grounded.
- Base-Emitter starts to conduct with $V_{BE}=0.6V$, I_C flows and it's $I_C=\beta*I_B$.
- Increasing I_B , V_{BE} slowly increases to 0.7V but I_C rises exponentially.
- As I_C rises ,voltage drop across R_C increases and V_{CE} drops toward ground. (transistor in saturation, no more linear relation between I_C and $I_B)$

Common Emitter characteristics

Figure 8.9(b) The collector-emitter output characteristics of a BJT

Operation region summary

Operation	I _B or V _{CE}	BC and BE	Mode
Region	Char.	Junctions	
Cutoff	I_B = Very small	Reverse & Reverse	Open Switch
Saturation	V _{CE} = Small	Forward & Forward	Closed Switch
Active	V _{CE} =	Reverse &	Linear
Linear	Moderate	Forward	Amplifier
Break-	V _{CE} =	Beyond	Overload
down	Large	Limits	

BJT as Switch

Saturation region

 $\bullet V_{out} = small$

Low

 $\bullet I_{\rm B} = (V_{\rm in} - V_{\rm B})/R_{\rm B}$

• \underline{V}_{in} (High)

• $V_{in}(Low) < 0.7 V$ •BE junction not forward biased Cutoff region No current flows $\bullet V_{OUT} = V_{CF} = V_{CC}$ • $\underline{V}_{out} = High$ iclSaturation Collector characteristic V_{CC} $i_B \approx 50 \,\mu\text{A}$ Rc •BE junction forward biased ($V_{BE}=0.7V$) $i_B = 40 \,\mu A$ R_C •V_{CF} small (~0.2 V for saturated BJT) $i_B = 20 \ \mu A$ Cutoff V_{CC} m V_{CE sat} ≈ 0.2 V

BJT as Switch 2

- Basis of digital logic circuits
- Input to transistor gate can be analog or digital
- Building blocks for <u>TTL</u> Transistor Transistor Logic
- <u>Guidelines</u> for designing a transistor switch:
 - V_C>V_B>V_E
 - V_{BE}= 0.7 V
 - I_C independent from I_B (in saturation).
 - Min. I_B estimated from by (I_{Bmin} \approx I_C/ β).
 - Input resistance \rightarrow such that I_B > 5-10 times I_{Bmin} because β varies among components, with temperature and voltage and R_B may change when current flows.
 - Calculate the max $I_{\rm C}$ and $I_{\rm B}$ not to overcome device specifications.

BJT as Amplifier

- •Common emitter mode
- •Linear Active Region
- Significant current Gain

Example:

•Let Gain, $\beta = 100$

•Assume to be in active region -> V_{BE} =0.7V

•Find if it's in active region

BJT as Amplifier

$$\begin{split} V_{BE} &= 0.7V \\ I_E &= I_B + I_C = (\beta + 1)I_B \\ I_B &= \frac{V_{BB} - V_{BE}}{R_B + R_E * 101} = \frac{5 - 0.7}{402} = 0.0107 mA \\ I_C &= \beta * I_B = 100 * 0.0107 = 1.07 mA \\ V_{CB} &= V_{CC} - I_C * R_C - I_E * R_E - V_{BE} = \\ &= 10 - (3)(1.07) - (2)(101 * 0.0107) - 0.7 = \\ &= 3.93V \end{split}$$

 $V_{\text{CB}} {>} 0$ so the BJT is in active region

Field Effect Transistors

- In 1925, the fundamental principle of FET transistors was establish by Lilienfield.
- 1955 : the first Field effect transistor works
- Increasingly important in mechatronics.
- Similar to the BJT:
 - Three terminals,
 - Control the output current

BJT Torminal	FET Torminal
Base	Gate
Collector	Drain
Emitter	Source

Field Effect Transistors

- Three Types of Field Effect Transistors
 - MOSFET (metal-oxide-semiconductor fieldeffect transistors)
 - JFET (Junction Field-effect transistors)
 - MESFET (metal-semiconductor field-effect transistors)
- Two Modes of FETs
 - Enhancement mode
 - Depletion mode
 - The more used one is the n-channel enhancement mode MOSFET, also called NMOS

FET Architecture

NMOS Voltage Characteristic

NMOS uses

- High-current voltage-controlled switches
- Analog switches
- Drive DC and stepper motor
- Current sources
- Chips and Microprocessors
- CMOS: Complementary fabrication

JFET overview

The circuit symbols:

JFET design:

Junction Field Effect Transistor

JFET uses

- Small Signal Amplifier
- Voltage Controlled Resistor
- Switch

FET Summary

- General:
 - Signal Amplifiers
 - Switches

JFET: For Small signals Low noise signals Behind a high impedence system Inside a good Op-Ampl.

MOSFET: Quick Voltage Controlled Resistors RDS can be really low : 10 mOhms

Power Transistors

In General

- Fabrication is different in order to:
 - Dissipate more heat
 - Avoid breakdown
- So Lower gain than signal transistors
- BJT
 - essentially the same as a signal level BJT
 - Power BJT cannot be driven directly by HC11
- MOSFET
 - base (flyback) diode
 - Large current requirements

Other Types of Transistors

Typical transistor packages

Various Types of Transistors

- TempFET MOSFET's with temperature sensor
- High Electron Mobility Transistors (HEMTs) allows high gain at very high frequencies
- Darlington two transistors within the same device, gain is the product of the two inidvidual transistors

Shockley Diode/Thyristor

- Four-layer PNPN semiconductor devices
- Behaves as two transistors in series
- Once on, tends to stay on
- Once off, tends to stay off

TRIAC

- Triode alternating current switch
- Essentially a bidirectional thyristor
- Used in AC applications
- Con: Requires high current to turn on
- Example uses: Modern dimmer switch

