
Algorithms

Understand the concept of an algorithm.

Define and use the three constructs for developing

algorithms: sequence, decision, and repetition.

Understand and use three tools to represent algorithms:

flowchart, pseudocode, and structure chart.

After reading this chapter, the reader should

be able to:

OBJECTIVES

Understand the concept of modularity and subalgorithms.

List and comprehend common algorithms.

CONCEPT

8.1

Figure 8-1

Informal definition of an algorithm

used in a computer

Figure 8-2

Finding the largest integer

among five integers

Figure 8-3

Defining actions in FindLargest algorithm

Figure 8-4

FindLargest refined

Figure 8-5

Generalization of FindLargest

THREE CONSTRUCTS

8.2

Figure 8-6

Three constructs

ALGORITHM

REPRESENTATION

8.3

Figure 8-7

Flowcharts for three constructs

Figure 8-8

Pseudocode for three constructs

Example 1

Write an algorithm in pseudocode that finds

the average of two numbers

Solution

See Algorithm 8.1 on the next slide.

 AverageOfTwo

 Input: Two numbers

1. Add the two numbers

2. Divide the result by 2

3. Return the result by step 2

 End

Algorithm 8.1: Average of two

Example 2

Write an algorithm to change a numeric

grade to a pass/no pass grade.

Solution

See Algorithm 8.2 on the next slide.

 Pass/NoPassGrade

 Input: One number

1. if (the number is greater than or equal to 70)

then

 1.1 Set the grade to “pass”

else

 1.2 Set the grade to “nopass”

End if

2. Return the grade

 End

Algorithm 8.2: Pass/no pass Grade

Example 3

Write an algorithm to change a numeric

grade to a letter grade.

Solution

See Algorithm 8.3 on the next slide.

 LetterGrade

 Input: One number

1. if (the number is between 90 and 100, inclusive)

then

 1.1 Set the grade to “A”

End if

2. if (the number is between 80 and 89, inclusive)

then

 2.1 Set the grade to “B”

End if

Algorithm 8.3: Letter grade

Continues on the next slide

3. if (the number is between 70 and 79, inclusive)

then

 3.1 Set the grade to “C”

End if

4. if (the number is between 60 and 69, inclusive)

then

 4.1 Set the grade to “D”

End if

Algorithm 8.3: Letter grade (continued)

Continues on the next slide

5. If (the number is less than 60)

then

 5.1 Set the grade to “F”

End if

6. Return the grade

End

Algorithm 8.3: Letter grade (continued)

Example 4

Write an algorithm to find the largest of a set

of numbers. You do not know the number of

numbers.

Solution

See Algorithm 8.4 on the next slide.

 FindLargest

 Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)

 2.1 if (the integer is greater than Largest)

 then

 2.1.1 Set largest to the value of the integer

 End if

End while

3. Return Largest

 End

Algorithm 8.4: Find largest

Example 5

Write an algorithm to find the largest of

1000 numbers.

Solution

See Algorithm 8.5 on the next slide.

 FindLargest

 Input: 1000 positive integers

1. Set Largest to 0

2. Set Counter to 0

3. while (Counter less than 1000)

 3.1 if (the integer is greater than Largest)

 then

 3.1.1 Set Largest to the value of the integer

 End if

 3.2 Increment Counter

End while

4. Return Largest

 End

Algorithm 8.5: Find largest of 1000 numbers

MORE FORMA DEFINITION

•Ordered set

•Unambiguous steps

•Effectiveness

•Termination

8.4

SUBALGORITHMS

8.5

Figure 8-9

Concept of a subalgorithm

 FindLargest

 Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)

 2.1 FindLarger

End while

3. Return Largest

 End

Algorithm 8.6: Find largest

 FindLarger

 Input: Largest and current integer

1. if (the integer is greater than Largest)

then

 1.1 Set Largest to the value of the integer

End if

End

Subalgorithm: Find larger

BASIC

ALGORITHMS

8.6

Figure 8-10

Summation

Figure 8-11

Product

Figure 8-12

Selection sort

Figure 8-13: part I

Example of selection sort

Figure 8-13: part II

Example of selection sort

Figure 8-14

Selection sort

algorithm

Figure 8-15

Bubble sort

Figure 8-16: part I

Example of bubble sort

Figure 8-16: part II

Example of bubble sort

Figure 8-17

Insertion sort

Figure 8-18: part I

Example of insertion sort

Figure 8-18: part II

Example of insertion sort

Figure 8-19

Search concept

Figure 8-20: Part I

Example of a sequential sort

Figure 8-20: Part II

Example of a sequential sort

Figure 8-21 Example of a binary sort

RECURSION

8.1

Figure 8-22

Iterative definition of factorial

Figure 8-23

Recursive definition of factorial

Figure 8-24

Tracing recursive solution to factorial problem

 Factorial

 Input: A positive integer num

1. Set FactN to 1

2. Set i to 1

3. while (i is less than or equal to num)

 3.1 Set FactN to FactN x I

 3.2 Increment i

End while

4. Return FactN

 End

Algorithm 8.7: Iterative factorial

 Factorial

 Input: A positive integer num

1. if (num is equal to 0)

then

 1.1 return 1

else

1.2 return num x Factorial (num – 1)

End if

 End

Algorithm 8.8: Recursive factorial

