Algorithms

OBJECTIVES

After reading this chapter, the reader should
be able to:

& Understand the concept of an algorithm.

& Define and use the three constructs for developing
algorithms: sequence, decision, and repetition.

& Understand and use three tools to represent algorithms:
flowchart, pseudocode, and structure chart.

& Understand the concept of modularity and subalgorithms.

& List and comprehend common algorithms.

CONCEPT

Figure 8-1

Informal definition of an algorithm
used In a computer

Input List

Algorithm ¢

A step-by-step method for
solving a problem or doing a task

Output List

Figure 8-2

Finding the largest integer
among five integers

12 8 13 9 11 IInputList

FindLargest ¢

éLargest ’ 12 12 List
Step 1

Largest ‘ 12 8 List
Step 2

Largest | 13 13 List
Step 3

Step 4

Largest ‘ 13 11 List
Step 5

13 Output Result

Figure 8-3

Defining actions in FindLargest algorithm

12 8 13 9 11 IInputList

FindLargest ¢

i Set Largest to the first number.

13 Output Result

Figure 8-4

FindLargest refined

12 8 13 9 11 | InputList

FindLargest

Set Largest to 0.
‘Step0
If the current number is greater than Largest, set Largest to the current number.

Step 1 m—

If the current number is greater than Largest, set Largest to the current number.

Step5

Output Result

Figure 8-5

Generalization of FindLargest

Input List
FindLargest

Repeat the following step /Vtimes:

| Largest |

THREE CONSTRUCTS

Figure 8-6

Three constructs

do action 1
do action 2

do action n

a. Sequence

if a condition is true,

b. Decision

while a condition is true,

do action 1
' do action 2 |

- do action n |

c. Repetition

ALGORITHM
REPRESENTATION

Figure 8-7

Flowcharts for three constructs

: while false
Action 1 I false true condition
\T%t/

true
Action 2 I
\L Another sequence i A sequence A sequence
of actions ! of actions ! of actions

Action n

v

a. Sequence b. Decision c. Repetition

Figure 8-8

Pseudocode for three constructs

if (condition)
| then B
R , action - while (condition)

action 1 action action
action 2 | B action

else .: S
action n action End while

action
a. Sequence g c. Repetition

b. Decision

|

IORGUTIICRL

Write an algorithm in pseudocode that finds
the average of two numbers

Solution

Algorithm 8.1: Average of two

AverageOfTwo
Input: Two numbers
. Add the two numbers

. Divide the result by 2

. Return the result by step 2
End

Write an algorithm to change a numeric
grade to a pass/no pass grade.

Solution

Algorithm 8.2: Pass/no pass Grade

Pass/NoPassGrade
Input: One number
. If (the number is greater than or equal to 70)
then
1.1 Set the grade to “pass”

else
1.2 Set the grade to “nopass”
End if
. Return the grade
End

Write an algorithm to change a numeric
grade to a letter grade.

Solution

Algorithm 8.3: Letter grade

LetterGrade
Input: One number
. If (the number is between 90 and 100, inclusive)

then
1.1 Set the grade to “A”

End if
. If (the number Is between 80 and 89, inclusive)

then
2.1 Set the grade to “B”

End if

Continues on the next slide

Algorithm 8.3: Letter grade (continued)

3. If (the number iIs between 70 and 79, inclusive)

then
3.1 Set the grade to “C”

End if

4. 1f (the number is between 60 and 69, inclusive)

then
4.1 Set the grade to “D”

End if

Continues on the next slide

Algorithm 8.3: Letter grade (continued)

5. If (the number is less than 60)
then

5.1 Set the grade to “F”

End if

. Return the grade
End

ISR CR

Write an algorithm to find the largest of a set
of numbers. You do not know the number of
numbers.

Solution

Algorithm 8.4: Find largest

FindLargest
Input: A list of positive integers
. Set Largestto 0
. while (more integers)
2.1 if (the integer Is greater than Largest)
then

2.1.1 Set largest to the value of the integer
End if
End while
. Return Largest
End

| ~
ISXGUTPIERS

Write an algorithm to find the largest of
1000 numbers.

Solution

Algorithm 8.5: Find largest of 1000 numbers

FindLargest
Input: 1000 positive integers
. Set Largestto 0
. Set Counter to 0
. while (Counter less than 1000)
3.1 If (the integer is greater than Largest)

then
3.1.1 Set Largest to the value of the integer
End if
3.2 Increment Counter
End while
4. Return Largest
End

8.4
- MORE FORMA DEFINITION
Ordered set

Unambiguous steps
*Effectiveness
» Termination

SUBALGORITHMS

Figure 8-9

Concept of a subalgorithm

FindLargest
Input: A list of integers

1. Set Largestto 0 FindLarger
2. while (more integers) / Input: Largest and integer

1. if (integer greater than Largest)
‘ 2.1 FindLarger ‘ then

1.1 Set Largest to the value of integer
3. Return Largest

End
End

Algorithm 8.6: Find largest

FindLargest

Input: A list of positive integers
. Set Largestto 0
. While (more integers)

2.1 FindLarger
End while

. Return Largest
End

Subalgorithm: Find larger

FindLarger
Input: Largest and current integer

. If (the integer Is greater than Largest)
then

1.1 Set Largest to the value of the integer
End if
End

BASIC
ALGORITHMS

Figure 8-10

Summation
I

Set sum to 0 |

|

More
numbers

Add current
number to sum

Return sum \

Figure 8-11

Product

|
Set product |

to 1

g

More
numbers

Multiply current
number by product

Return product

Figure 8-12

Selection sort

Wall

swap (smallest element with element k)

A -

>
Sorted Unsorted

Figure 8-13: part |

oy

v

1 23/781|45| 8 | 32 56‘
— Unsorted >
8! 17845233256
— Unsorted >
8 |23 |45/ 7832 |56
Sl >

Unsorted

Example of selection sort

Original list

After pass 1

After pass 2

Figure 8-13: part |1

Example of selection sort

Yy

8

23

B

78

45

96

-

Sorted

|

S

>

Unsorted

vy

8

23

32

45|

78

96

-

Sorted

>

4>

23

32

45

56

78

Sorted

After pass 3

After pass 4

After pass 5

Figure 8-14

C s Selection sort

algorithm

beginning of the list

Place the wall at the |

While there are false
—» more elements in
the unsorted list

true

Find smallest element
in unsorted list

This can be done in a
subprogram and involves
a loop

—

Swap the smallest elerment
with first element of
unsorted list
|
Move the wall
one element to
the right

v

S0

Figure 8-15

Bubble sort

Bubble up

[

N

Sorted Unsorted

Figure 8-16: part |

23|78|45 8 | 32|56
- Unsorted >
8 | 23|78 45|32 |56
- Unsorted >

8 123 (32|7845 |56

_

Unsorted

Example of bubble sort

Original list

After pass 1

After pass 2

Figure 8-16: part |1

Example of bubble sort

8

23

32

78

96

- Sorted >

145

i >
*Unsorted

23

32

45

96

78

Sorted

After pass 3

After pass 4
Sorted

Figure 8-17

Insertion sort

‘I‘—‘

Sorted

Unsorted

=

Figure 8-18: part |

Example of insertion sort

23| |78/45| 8 |32 |56
__:t_m Unsorted

23 (78| 45| 8 | 32|56
. Unsorted

23 (45|78| 8|32 |56
Sorted Unsorted

Original list

After pass 1

After pass 2

Figure 8-18: part |1

Example of insertion sort

r oo
234578 [32|56
- >« >
Sorted
23|32 (45|78 56
- >
Sorted
2332|4556 |78 |
< .._ff

Sorted

After pass 3

After pass 4

After pass 5

Figure 8-19

Search concept

[.ocation wanted

22

81

77

10

Target given
(62)

Figure 8-20: Part |

Example of a sequential sort

position
Location wanted
(4)
0 1 2 3 4 5 6 T 8 9 10 11
N 14 22 | 7 |81 |77 |10
position

-\@ Targ(eft; zg:;ven
7 8 9 10 11

21 | 36 | 14 | 62 | 91 8 22 7 | 81 | 77 | 10

pDSltlDﬂ

2 6 7 8 9 10 11

91 8 22 T | 81 | 77 | 10

Figure 8-20: Part Il

position

position

Example of a sequential sort

0 1 2 3 4 5] 6 7 9 10 11

4 21 | 36 | 14 | 62 | 91 8 22 81 | 77 | 10
62 !=14

0 1 z 3 4 2 6 7 9 10 11

4 21 | 36 | 14 | 62 | 91 8 22 81 | 77 | 10

Figure 8-21 Example of a binary sort
first mid last
0 5 | 11

0 1 2 3 4 5 6 7 8 9 10 11

4 7 8 10 | 14 2’41 22 | 36 |62 | 77 | 81 | 91

& first mid last

6 8 11

0 1 2 3 4 5 6 7 8 9 10 11
4 7 8 10 | 14 | 21 | 22 | 36 91

first mid last 22 - 62
6 ! lI

77 | 81 | 91

RECURSION

Figure 8-22

Iterative definition of factorial

1 if n=0
Factorial (n) =
nxn-1)x@n-2)x ... x 3x2x1 if n>0

Figure 8-23

Factorial (n) =

Recursive definition of factorial

n x Factorial (27— 1)

it n=0

ifn>0

Figure 8-24

Tracing recursive solution to factorial problem

Factorial (3) = 3 X Factorial (2) Factorial 3) = 3 X 2 = 6
Factorial (2) = 2 x Factorial (1) Factorial (2) = 2 x 1 = 2
Factorial (1) = 1 X Factorial (0) Factorial (1) = 1 x 1 = 1

Factorial (0) = 1 I

Algorithm 8.7: Iterative factorial

Factorial
Input: A positive integer num
. SetFactNto 1

Setitol
. while (i is less than or equal to num)

3.1 Set FactN to FactN x |
3.2 Increment I

End while

Return FactN

End

Algorithm 8.8: Recursive factorial

Factorial
Input: A positive integer num

. If (num Is equal to 0)
then
1.1 returnl
else
1.2 return num x Factorial (num — 1)
End if
End

